Algebra II - Mrs. Tilus
Unit 8 Review

1. Divide. You may use long or synthetic division.
a) $\frac{2 x^{3}+3 x-5}{x+2}$
b) $\frac{10 x^{2}+x-3}{5 x+3}$
c) $\frac{3 x^{4}+x^{3}-2 x+7}{x^{2}-x+1}$
2. Use synthetic substitution to find $\mathrm{P}(\mathrm{c})$ for the given polynomial $\mathrm{P}(\mathrm{x})$ and the given number c .

$$
P(x)=x^{3}+2 x^{2}-6 x-4 ; \quad c=-2
$$

$$
\mathrm{P}(-2)=
$$

3. Use the factor theorem to determine whether $\mathrm{x}+1$ is a factor of $\mathrm{P}(\mathrm{x})$. Show your work to receive full credit, and circle the answer.

$$
\mathrm{P}(\mathrm{x})=x^{12}-3 x^{8}-4 x-2
$$

Circle one: Factor or Not a Factor
4. Consider the polynomial $2 \mathrm{x}^{3}-5 \mathrm{x}^{2}-4 \mathrm{x}+3$.
a) State the number of possible factors.
b) State all of the possible roots by using the rational root theorem.
c) Draw a graph of the polynomial.

(Include tick marks for \mathbf{x}-axis)

d) By using the calculator and/or synthetic division, write the polynomial in factored form.

Factors: \{ \qquad
5. Write a third-degree equation which has solutions of $x=-3 i$, and $x=5$.
6. Answer each question.
a) What is true about the tails of an even degree function?
b) What is the maximum number of "bumps" in a $6^{\text {th }}$ degree polynomial?
c) Can an even degree polynomial have no x-intercepts?
d) Can an odd degree polynomial have no x-intercepts?
e) Can a polynomial with real coefficients have only one imaginary root?
7. Draw a graph for a fourth-degree polynomial equation that has two real roots.

8. Given the following entries from a table for a function L, use linear interpolation to estimate x to three significant digits if $\mathrm{L}(\mathrm{x})=0.525$.

x	1.5	1.6	1.7	1.8
$\mathrm{~L}(\mathrm{x})$	0.405	0.470	0.531	0.588

9. Consider the function $y=x^{3}+3 x^{2}+16 x+48$
a) Draw a graph of the function. (Include tick marks for \mathbf{x}-axis)
b) Find the values of the real zeros of the function.
c) Find the values of the imaginary zeros of the function.

Zeros: \{ \qquad
10. If r is directly proportional to $\mathrm{s}+1$, and $\mathrm{r}=4$ when $\mathrm{s}=5$, find r when $\mathrm{s}=8$.

$$
\begin{aligned}
& K= \\
& r=
\end{aligned}
$$

11. The distance an object falls from rest is directly proportional to the square of the length of time it has fallen. If an object falls 64 feet in 2 seconds, how far will it fall in 3 seconds?

$$
\begin{aligned}
& K= \\
& D=
\end{aligned}
$$

12. If y varies inversely with x , and $\mathrm{y}=5$ when $\mathrm{x}=4$, find x when $\mathrm{y}=10$.

$$
\begin{aligned}
& K= \\
& x=
\end{aligned}
$$

