Name: ______

Algebra II – Mrs. Tilus Unit 8 Review

1. Divide. You may use long **or** synthetic division.

a)
$$\frac{2x^3 + 3x - 5}{x + 2}$$
 b) $\frac{10x^2 + x - 3}{5x + 3}$ c) $\frac{3x^4 + x^3 - 2x + 7}{x^2 - x + 1}$

2. <u>Use synthetic substitution</u> to find P(c) for the given polynomial P(x) and the given number c.

 $P(x) = x^3 + 2x^2 - 6x - 4$; c = -2

P(-2)=

3. Use the factor theorem to determine whether x + 1 is a factor of P(x). Show your work to receive full credit, and circle the answer.

 $P(x) = x^{12} - 3x^8 - 4x - 2$ Circle one: Factor or Not a Factor

- 4. Consider the polynomial $2x^3 5x^2 4x + 3$.
 - a) State the <u>number</u> of possible factors.

b) State all of the possible roots by using the rational root theorem.

c) Draw a graph of the polynomial.(Include tick marks for x-axis)

d) By using the calculator and/or synthetic division, write the polynomial in factored form.

Factors: { _____}

5. Write a third-degree equation which has solutions of x = -3i, and x = 5.

6. Answer each question.

- a) What is true about the tails of an even degree function?
- b) What is the maximum number of "bumps" in a 6^{th} degree polynomial?
- c) Can an even degree polynomial have no x-intercepts?
- d) Can an odd degree polynomial have no x-intercepts?
- e) Can a polynomial with real coefficients have only one imaginary root?
- 7. Draw a graph for a fourth-degree polynomial equation that has two real roots.

8. Given the following entries from a table for a function L, use linear interpolation to estimate x to three significant digits if L(x) = 0.525.

Х	1.5	1.6	1.7	1.8
L(x)	0.405	0.470	0.531	0.588

- 9. Consider the function y = x³ + 3x² + 16x + 48
 a) Draw a graph of the function. (Include tick marks for x-axis)
 - b) Find the values of the **real** zeros of the function.
 - c) Find the values of the **imaginary** zeros of the function.

Zeros: { _____}

10. If r is **directly** proportional to s + 1, and r = 4 when s = 5, find r when s = 8.

11. The distance an object falls from rest is directly proportional to the square of the length of time it has fallen. If an object falls 64 feet in 2 seconds, how far will it fall in 3 seconds?

 $K = ___$ $D = ____$

K =

r = _____

12. If y varies **inversely** with x, and y = 5 when x = 4, find x when y = 10.

K = _____ *x* = _____