\qquad

Geometry

Unit 3: Parallel and Perpendicular Lines

Priority Standard: G-CO.9: Prove theorems about lines and angles

Unit "I can" statements:

1. I can identify corresponding, alternating interior, alternate exterior and consecutive interior angles using parallel lines and a transversal.
2. I can apply the relationships between corresponding, alternating interior, alternate exterior and consecutive interior angles to find unknown angle measures.
3. I can use angle relationships to prove that lines are parallel.
4. I can prove lines perpendicular and parallel.
5. I can find slopes given a graph or two ordered pair.
6. I can identify parallel and perpendicular slopes.
7. I can find equations of lines in slope-intercept form.

Common Core State Standards that are addressed in this unit include:
For more information see www.corestandards.org/Math/

Chapter 3.1: Identify Pairs of Lines
Chapter 3.2: Identify Pairs of Angles using Parallel Lines and Transversals

Objectives:

1. I can identify corresponding, alternating interior, alternate exterior and consecutive interior angles using parallel lines and a transversal.
2. I can apply the relationships between corresponding, alternating interior, alternate exterior and consecutive interior angles to find unknown angle measures.

Definitions:

Perpendicular Lines: two lines that intersect
to form a \qquad .
Symbols:

Parallel Lines: two lines that do not \qquad and are \qquad .

Symbols:

Parallel Planes: two planes that do not \qquad .

Skew Lines: two lines that do not \qquad and are not \qquad .

Parallel Postulate \#13:

Given a line and a point not on the line, then there is exactly one line through the point \qquad to the given line.

Perpendicular Postulate \#14:

Given a line and a point not on the line, then there is exactly one line through the point \qquad to the given
line.

Example \#1: Which line(s) or planes(s) in the figure appear to fit the description?

1. Parallel to $\overleftrightarrow{M N}$ and contains J
2. Skew to $\overleftrightarrow{M N}$ and contain J
3. Perpendicular to $\overleftrightarrow{M N}$ and contains J
4. Name the plane that contains J and appears to be parallel to plane MNO
5. Name the plane that contains J and appears to be perpendicular to plane MNO
: a line that intersects two or more coplanar line at different points

Corresponding Angles: two angles in the \qquad location, matching corners.

Examples:

Corresponding Angles (Postulate 15):

If two parallel lines are cut by a \qquad then the pairs of corresponding angles are \qquad .

Alternate Interior Angles: two angles that lie on either side of the \qquad in between the other two lines

Examples:

Alternate Interior Angles (Theorem 3.1):

If two parallel are cut by a \qquad , then the pairs of alternate interior angles are \qquad .

Alternate Exterior Angles: two angles that lie on either side of the \qquad on the
\qquad of the other two lines.
Examples:

Alternate Exterior Angles (Theorem 3.2):

If two parallel lines are cut by a \qquad , then the pairs of alternate exterior angles are \qquad .

Consecutive Interior Angles: two angles on the \qquad side of the \qquad in between the other two line.

Examples:

Consecutive Interior Angles (Theorem 3.3):

If two parallel lines are cut by a \qquad , then the pairs of consecutive interior angles are \qquad .

Example \#2: If $\mathrm{m} \angle 7=75^{\circ}$, identify three other angles that also are 75°. Tell which postulate or theorem you use in each case.

Example \#2: Find $m \angle 1$ and $m \angle 2$. Explain your reasoning.

Example \#3: Find the values of x and y.
a.)

b.)

Example \#4: Given: Two parallel lines $p \| q$ are cut by a transversal, t. Prove: The Alternate Interior Angles Theorem: $\angle 1 \cong \angle 2$

Statement	Reason
1.	1.
2. \quad 2. Corresponding Angles Postulate	
3. $\angle 3 \cong \angle 2$	3.
4.	4.

Example \#5: Given: $p \perp t$ and $p \| q$

pg. 5

Chapter 3.3: Prove Lines are Parallel
Objective: I can use angle relationships to prove that lines are parallel

Corresponding Angles Converse (Postulate 16):

If two lines are cut by a transversal so the Corresponding Angles are \qquad , then the lines are \qquad .

Alternate Interior Angles Converse (Theorem 3.4):

If two lines are cut by a transversal so the Alternate Interior Angles are \qquad , then the lines are \qquad .

Alternate Exterior Angles Converse (Theorem 3.5):

If two lines are cut by a transversal so the Alternate Exterior Angles are \qquad , then the lines are \qquad .

Consecutive Interior Angles Converse (Theorem 3.6):

If two lines are cut by a transversal so the Consecutive Interior Angles are \qquad , then the lines are \qquad .

Transitive Property of Parallel Lines (Theorem 3.7):
If two lines are parallel to the same line, the they are also.

Example \#1: Find the values of x that makes $m \| n$.

b.)

Example \#2: Is it possible to prove that line p and k are parallel? If so, state the postulate or theorem you would use.

b.)

Example \#3: Given: $\angle 4 \cong \angle 5$
Prove: The Alternate Interior Angles Converse: $g \| h$

pg. 7

Example \#4: Given: $\angle 1 \cong \angle 2, n \| m$
Prove: $p \| t$

Chapter 3.6: Prove Theorems about Perpendicular Lines
Objective: I can prove lines perpendicular and parallel.

Congruent Linear Pair Theorem (Theorem 3.8):

If two lines intersect to form a linear pair of congruent angles, then the lines are \qquad .

Perpendicular Lines-Right Angles Theorem (Theorem 3.9):

If two lines are perpendicular, then they intersect to form
\qquad .

Complementary Adjacent Acute Angles Theorem (Theorem 3.10):

If two sides of two adjacent acute angles are perpendicular, then the angles are \qquad .

Example \#1: In the diagram, $\angle 1 \cong \angle 2$. What can you say about a and b ?

pg. 8

Example \#2: Given: $\angle 1 \cong \angle 2$.
Prove: $\angle 3$ and $\angle 4$ are complementary angles
2. \qquad
3. \qquad 3. \qquad

Example \#3: If $c \perp d$, what do you know about the sum of the measures of $\angle 3$ and $\angle 4$? Explain.

Example \#4: Given: $\overrightarrow{E D} \perp \overrightarrow{E F}$
Prove: $\angle 7$ and $\angle 8$ are complementary angles

Statement	Reason
1.	1.
2.	2.
3.	$3 .$
4.	4.
5.	5.
6.	6.

Perpendicular Transversal Theorem (Theorem 3.11):

If a transversal is \qquad to one
of two parallel lines, the it is perpendicular to the other.

Lines Perpendicular to a Transversal Theorem (Theorem 3.12):
In a plane, if two lines are perpendicular to the same line, then they are \qquad .

Example \#5: Determine which lines, if any, must be parallel in the diagram. Explain your reasoning.

Example \#6: Is $b \| a$? Is $b \perp c$? Explain your reasoning.

Chapter 3.4: Find and Use Slopes of Lines

Objective: I can find slopes given a graph or two ordered pair.
I can identify parallel and perpendicular slopes.

Slope:

The \qquad of a non-vertical line is the ratio of vertical \qquad) to horizontal change (\qquad _)
between any two points on the line.

If a line in the coordinate plane passes through points (\qquad ,) and (\qquad , __) then the slope m is

Slope of Lines in the Coordinate Plane:

1. Negative Slope: \qquad
\qquad
2. Positive Slope: \qquad
\qquad
3. Zero Slope: \qquad
\qquad
4. Undefined Slope: \qquad
\qquad

Example \#1: Find the slope of lines a, b, c and d.

Example \#2: Determine the slope of the line that passes through the given points
a.) $(5,-3)$ and $(10,4)$
b.) $(-4,3)$ and $(-4,-5)$
c.) $(6,3)$ and $(3,3)$

Slopes of Parallel Lines (Postulate 17):

In a coordinate plane, two non-vertical lines are parallel \qquad they have the \qquad .
Example:

Slopes of Perpendicular Lines (Postulate 18):

In a coordinate plane, two non-vertical lines are perpendicular \qquad their slopes are \qquad

Example:

Example \#3: Given the line $y=-\frac{2}{3} x+5$

What is the slope of a line that is perpendicular to this line?

What is the slope of a line that is parallel to this line?

Example \#4: Find the slope of each line. Which lines are parallel?

Example \#5: Line c passes through $(2,-2)$ and $(5,7)$. Line d passes through $(-3,4)$ and $(1,-8) . c \| d$? Explain how you know.

Example \#6: Line h passes through $(1,-2)$ and $(5,6)$. Graph the line perpendicular to h that passes through the point (2, 5).

Example \#7: Line n passes through $(1,6)$ and $(8,4)$. Line m passes through $(0,5)$ and $(2,12)$. Is $n \perp m$? Explain.

Objective: I can find equations of lines in slope-intercept form.

Linear Equations

Slope-Intercept Form:

Standard Form:
x-intercept:
y-intercept:

The two things you need to know or find to make an equation of a line are:
\qquad and at least one \qquad

Example \#1. Given: slope and y-intercept- Find the equation of a line in slope-intercept form with the slope $-\frac{2}{5}$ and y-intercept 9 .

Example \#2. Given: slope and a point- Find the equation of a line in slope-intercept form that passes through P $(3,-2)$ and has the slope $m=-2$.

Example \#3. Given: two points- Find the equation of a line in slope-intercept form that passes through $(0,3)$ and (2, -1).

Example \#4: Given: a graph- Write an equation of the line in the graph
a.)

b.)

Example \#5: Graph the following equations.
a.) $y=\frac{2}{3} x-7$

b.) $y=2 x-3$

c.) $2 x-3 y=6$
d.) $8 x-2 y=6$

e.) $x-2=4$
f.) $y=-4$

Review \#1: Given the line $y=-\frac{2}{7} x+6$
What is the slope of a line that is perpendicular to this line?

What is the slope of a line that is parallel to this line?

Review \#2: Given the line $y=5 x-1$
What is the slope of a line that is perpendicular to this line?

What is the slope of a line that is parallel to this line?

Example \#6: Write an equation in slope-intercept form of the line passing through the point $(8,-5)$ that is parallel to the line with the equation $y=-\frac{3}{2} x-5$

Example \#7: Write an equation in slope-intercept form of the line passing through the point $(-8,-2)$ that is perpendicular to the line with the equation $y=4 x+3$

Example \#8: Find equations in slope-intercept form of the lines that go through point $P(12,-5)$ and are parallel and perpendicular to line L

L: $y=\frac{3}{4} x+2$
Parallel Line:
Perpendicular Line:

