Name: _____

Geometry

Unit 3: Parallel and Perpendicular Lines

Priority Standard: G-CO.9: Prove theorems about lines and angles

Unit "I can" statements:

- 1. I can identify corresponding, alternating interior, alternate exterior and consecutive interior angles using parallel lines and a transversal.
- 2. I can apply the relationships between corresponding, alternating interior, alternate exterior and consecutive interior angles to find unknown angle measures.
- 3. I can use angle relationships to prove that lines are parallel.
- 4. I can prove lines perpendicular and parallel.
- 5. I can find slopes given a graph or two ordered pair.
- 6. I can identify parallel and perpendicular slopes.
- 7. I can find equations of lines in slope-intercept form.

Common Core State Standards that are addressed in this unit include: For more information see <u>www.corestandards.org/Math/</u>

Chapter 3.1: Identify Pairs of Lines Chapter 3.2: Identify Pairs of Angles using Parallel Lines and Transversals

Objectives:

- 1. I can identify corresponding, alternating interior, alternate exterior and consecutive interior angles using parallel lines and a transversal.
- 2. I can apply the relationships between corresponding, alternating interior, alternate exterior and consecutive interior angles to find unknown angle measures.

Definitions:		
Perpendicular Lines: two lines that int to form a Symbols: Parallel Lines: two lines that do not and are Symbols:		
Parallel Planes: two planes that do not Skew Lines: two lines that do not and are not		
Parallel Postulate #13:		
Given a line and a point not on the line, then the	ere is exactly one	
line through the pointline.	-	
Perpendicular Postulate #14:		
Given a line and a point not on the line, then th	ere is exactly one	
line through the point line.	_ to the given	

Example #1: Which line(s) or planes(s) in the figure appear to fit the description?

$ \begin{array}{c} & 1 & 2 \\ & 3 & 4 \\ & & 5 & 6 \\ & & 7 & 8 \\ \end{array} $
Alternate Exterior Angles: two angles that lie on either side of the on the
of the other two lines.
Examples:
Alternate Exterior Angles (Theorem 3.2): If two parallel lines are cut by a, then the pairs of <u>alternate exterior angles</u> are
Consecutive Interior Angles: two angles on the side of the in between the other two line.
Examples:
Consecutive Interior Angles (Theorem 3.3):
If two parallel lines are cut by a, then the pairs of consecutive interior angles
are

Example #2: If $m \angle 7 = 75^\circ$, identify three other angles that also are 75°. Tell which postulate or theorem you use in each case.

Example #2: Find $m \angle 1$ and $m \angle 2$. Explain your reasoning.

pg. 4

Example #3: Find the values of *x* and *y*.

Example #4: Given: Two parallel lines $p \parallel q$ are cut by a transversal, <i>t</i> .
Prove: The Alternate Interior Angles Theorem: $\angle 1 \cong \angle 2$

Prove: The Alternate Interior	Prove: The Alternate Interior Angles Theorem: $\angle I \cong \angle Z$						
Statement	Reason						
1	1						
2	2. Corresponding Angles Postulate	2 3					
3. ∠3 ≅ ∠2	3	_ <					
4	4						

Example #5: **Given:** $p \perp t$ and $p \parallel q$

Prove: $q \perp t$	1	
Statement	Reason	2 ~ ~ q
1. $p \perp t$	1	
2. $\angle 1$ is a right angle	2	
3	3. Definition of a Right Angle	t
4	4. Given	
5. $\angle 1 \cong \angle 2$	5	
6	6. Definition of Congruent Angles	
7	7. Transitive Property of Equality	
8. ∠2 is a right angle	8	
9	9	
	I	

7 p

t

 \uparrow

Chapter 3.3: Prove Lines are Parallel

<u>Objective</u>: I can use angle relationships to prove that lines are parallel

Corresponding Angles Converse (Postulate 16):	
If two lines are cut by a transversal so the <u>Corresponding Angles</u> are, then the lines are	
Alternate Interior Angles Converse (Theorem 3.4):	
If two lines are cut by a transversal so the <u>Alternate Interior Angles</u>	
are, then the lines are	
Alternate Exterior Angles Converse (Theorem 3.5):	
If two lines are cut by a transversal so the Alternate Exterior Angles	
are, then the lines are	
Consecutive Interior Angles Converse (Theorem 3.6):	
If two lines are cut by a transversal so the <u>Consecutive Interior Angles</u>	
are, then the lines are	
Transitive Property of Parallel Lines (Theorem 3.7):	
If two lines are parallel to the same line, the they are also.	

Example #2: Is it possible to prove that line p and k are parallel? If so, state the postulate or theorem you would use.

Example #4: Given: $\angle 1 \cong \angle 2, n \parallel m$ Prove: $p \parallel t$		p t 2 m
Statement	Reason	
1	1	
1		
2. $\angle 2 \cong \angle 3$	2	-
3	3	-
4	4	-

Chapter 3.6: Prove Theorems about Perpendicular Lines

<u>Objective</u>: I can prove lines perpendicular and parallel.

Congruent Linear Pair Theorem (Theorem 3.8):
If two lines intersect to form a linear pair of congruent angles,
then the lines are
Perpendicular Lines-Right Angles Theorem (Theorem 3.9):
If two lines are perpendicular, then they intersect to form
·
Complementary Adjacent Acute Angles Theorem (Theorem 3.10):
If two sides of two adjacent acute angles are perpendicular,
then the angles are

Example #1: In the diagram, $\angle 1 \cong \angle 2$. What can you say about *a* and *b*?

Example #3: If $c \perp d$, what do you know about the sum of the measures of $\angle 3$ and $\angle 4$? Explain.

Statement	Reason F E
1	1
2	2
3	3
4	4
5	5
б	6

Example #5: Determine which lines, if any, must be parallel in the diagram. Explain your reasoning.

Example #6: Is $b \parallel a$? Is $b \perp c$? Explain your reasoning.

Chapter 3.4: Find and Use Slopes of Lines

Objective: I can find slopes given a graph or two ordered pair. I can identify parallel and perpendicular slopes.

Slope:								
The of a non-vertical line	e is the ratio of				♠			
vertical () to horizontal cha	inge (_)						
between any two points on the line.								
If a line in the coordinate plane passes thr	ough points	-						_
(,) and (,) then the slop		•						F
(,) and (,) then the slop					Ļ			
					•			
Slope of Lines in the Coordinate Plane:								
					t			
1. Negative Slope:				\square	+	+++		
2. Positive Slope:								
		-	##			###		→
3. Zero Slope:			++-			+++		
4. Undefined Slope:								
4. Undefined Slope:								

Example #1: Find the slope of lines *a*, *b*, *c* and *d*.

Example #2: Determine the <u>slope</u> of the line that passes through the given points

a.) (5, -3) and (10, 4)	b.) (-4, 3) and (-4, -5)	c.) (6, 3) and (3, 3)
$a_{1}(3, -3)$ and $(10, +)$	0.7(-4, 3) and $(-4, -3)$	(0, 3) and $(3, 3)$

Slopes of Parallel Lines (Postulate 17):
In a coordinate plane, two non-vertical lines are parallel they have the
Example:
Slopes of Perpendicular Lines (Postulate 18):
In a coordinate plane, two non-vertical lines are perpendicular their slopes are
·
Example:

Example #3: Given the line $y = -\frac{2}{3}x + 5$

What is the slope of a line that is <u>perpendicular</u> to this line?

What is the slope of a line that is <u>parallel</u> to this line?

Example #4: Find the slope of each line. Which lines are parallel?

Example #5: Line *c* passes through (2, -2) and (5, 7). Line *d* passes through (-3, 4) and (1, -8). $c \parallel d$? Explain how you know.

Example #6: Line *h* passes through (1, -2) and (5, 6). Graph the line perpendicular to *h* that passes through the point (2, 5).

Example #7: Line *n* passes through (1, 6) and (8, 4). Line *m* passes through (0, 5) and (2, 12). Is $n \perp m$? Explain.

Chapter 3.5: Writing and Graphing Equations

Objective: I can find equations of lines in slope-intercept form.

Linear Equations
Slope-Intercept Form:
Standard Form:
x-intercept:
y-intercept:
The two things you need to know or find to make an equation of a line are:
and at least one

Example #1. <u>Given: slope and y-intercept-</u> Find the equation of a line in slope-intercept form with the slope $-\frac{2}{5}$ and y-intercept 9.

Example #2. Given: slope and a point- Find the equation of a line in slope-intercept form that passes through P (3, -2) and has the slope m = -2.

Example #3. <u>Given: two points</u>- Find the equation of a line in slope-intercept form that passes through (0, 3) and (2, -1).

Example #4: <u>Given: a graph-</u> Write an equation of the line in the graph

c.) 2x - 3y = 6

b.) y = 2x - 3

b.)

Review #1: Given the line $y = -\frac{2}{7}x + 6$

What is the slope of a line that is <u>perpendicular</u> to this line?

What is the slope of a line that is <u>parallel</u> to this line?

Review #2: Given the line y = 5x - 1

What is the slope of a line that is perpendicular to this line?

What is the slope of a line that is <u>parallel</u> to this line?

Example #6: Write an equation in slope-intercept form of the line passing through the point (8, -5) that is **parallel** to the line with the equation $y = -\frac{3}{2}x - 5$

Example #7: Write an equation in slope-intercept form of the line passing through the point (-8, -2) that is **perpendicular** to the line with the equation y = 4x + 3

Example #8: Find equations in slope-intercept form of the lines that go through point P(12, -5) and are parallel and perpendicular to line L

L:
$$y = \frac{3}{4}x + 2$$

Parallel Line:

Perpendicular Line: