\qquad

Geometry

Unit 1: Essentials of Geometry

Priority Standard: G.CO.1: Know precise definition of angles, circle, perpendicular line, parallel line and line segment, based on the undefined notions of point, line distance along a line and distance around a circular arc.

Unit "I can" statements:

1. I can name and sketch geometric figures.
2. I can use segment postulates to identify congruent segments.
3. I can use the midpoint and distance formulas.
4. I can name, measure and classify angles.
5. I can use special angle relationships to find angle measures.
6. I can classify polygons.
7. I can the perimeter/circumference and area of squares, rectangles, triangles and circles.

Common Core State Standards that are addressed in this unit include:
For more information see www.corestandards.org/Math/

Objective: I can name and sketch geometric figures.

Algebra Review:

1. Simplify if $x=2 ;-18+3 x$
2. Solve for $x ; 8 x+12=60$
3. Simplify; |3-11|

Term	Definition	Example/Symbols	
Point	Has \qquad dimension Represented with a \qquad		
Line	Has \qquad dimension Represented by a line with two \qquad , but extends NOTE:		
Plane	Has \qquad dimension and extends NOTE:		
Collinear Points			
Coplanar Points			
Line Segment, Endpoints	Part of the line that consists of two \qquad (called \qquad) and all the points on the line between them.		

Ray	Ray AB consists of the all endpoints on___ that lie on the same side as B.		
Opposite Rays			
Intersection	When two or more geometric figures cross at a similar point or line.		

Example \#1: Use the diagram to answer the following questions (Line b and point P lie on Plane Z).
a.) Give two other names for $\overleftrightarrow{L N}$.
b.) Give two other names for plane Z .
c.) Name three points that are collinear.
d.) Name four points that are coplanar.
e.) Give two other names for $\overleftrightarrow{M Q}$.
f.) Name a point that is not coplanar with points L, N and P.

Example \#2: Use the diagram to answer the following questions

a.) Give another name for $\overline{V X}$
b.) Name all rays with endpoints W . Which are opposite rays?
c.) Give another name for $\overline{Y W}$

d.) Are $\overrightarrow{V X}$ and $\overrightarrow{X V}$ the same ray? Are $\overrightarrow{V W}$ and $\overrightarrow{V X}$ the same ray?

Example \#3: Sketch the following descriptions
a.) A plane and a line that intersects the plane at more than one point.
b.) A plane and a line that is in the plane AND another line that intersects the line and plane at a point.
c.) Two planes that intersect in a line.

Example \#4: Graph the inequality on a number line. Tell whether the graph is a segment, a ray or rays, a point, or a line.
a.) $x \geq 2$
b.) $2 \leq x \leq 5$
c.) $x \leq 0$ or $x \geq-8$

Chapter 1.2: Use Segments and Congruence
Objective: I can use segment postulates to identify congruent segments.

Postulate or Axiom:

Theorem:

Postulate 1: Ruler Postulate

The points on a line can be matched one to one with
real numbers. The real number that correspond to a point is the

\qquad of the point.

The \qquad between points A and B
(Written as \qquad), is the absolute value of the difference
of the coordinates of A and B.

Between:

Postulate 2: Segment Addition Postulate

If B is between A and C, then \qquad
If $A B+B C=A C$, then \qquad
\qquad .

Example \#1: The locations shown lie in a straight line.
Find the distance from the starting point to the destination.

Example \#2: Use the diagram to find LM

Congruent Line Segments:

Symbols:

What is the difference between $=$ and \cong ?

Example \#3: Plot $\mathrm{F}(4,5), \mathrm{G}(-1,5), \mathrm{H}(3,3)$, and $\mathrm{J}(3,-2)$ in a coordinate plane.
Then determine whether $\overline{F G}$ and $\overline{H J}$ are congruent.

Chapter 1.3: Use Midpoint and Distance Formula

Objective: I can use the midpoint and distance formulas

Algebra Review:

1. You are given an equation of a line and a point. Use substitution to determine whether the point is on the line.
a.) $y=-x+3 ; A(6,3)$
b.) $y=-x+3 ; \mathrm{A}(6,3)$
2. Simplify. Round to the nearest hundredth when necessary.
a.) $\sqrt{9}$
b.) $\sqrt{-9}$
c.) $\sqrt{20}$
d.) $\sqrt{100}$
e.) $\sqrt{12}$

Midpoint:

The point that \qquad a line segment into
two \qquad segments.

Segment Bisector:

A point, ray, line, line segment or plane that \qquad
a line segment at its \qquad

Example \#1: Find AB.

Example \#2: Point C is the midpoint of $\overline{B D}$. Find the length of $\overline{B C}$.

Midpoint Formula:

If $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$ are points in a coordinate plane, then midpoint M of $\overline{A B}$ has coordinates

Example \#3: The endpoints of $\overline{P R}$ are $\mathrm{P}(-2,5)$ and $\mathrm{R}(4,3)$. Find the coordinates of the midpoint M .

Example \#4: The midpoint of $\overline{A C}$ is $\mathrm{M}(3,4)$. One endpoint is $\mathrm{A}(1,6)$. Find the coordinates of endpoint C .

Distance Formula:

If $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$ are points in a coordinate plane, then the distance between A and B is

Example \#5: What is the approximate length of $\overline{R T}$, with endpoints $\mathrm{R}(3,2)$ and $\mathrm{T}(-4,3)$?

Example \#6: What is the approximate length of $\overline{G H}$, with endpoints $\mathrm{G}(5,-1)$ and $\mathrm{H}(-3,6)$?

Chapter 1.4: Measure and Classify Angles

Objective: I can name, measure and classify angles.

Review:

1. Find the coordinates of the midpoint and length of $\overline{L R}$, with endpoints $\mathrm{L}(3,-7)$ and $\mathrm{R}(-1,9)$.

An \qquad consists of two different rays with the same \qquad .

The rays are the \qquad of the angle.

The endpoint is the \qquad of the angle.

Name:

But how should you name this next example?

Measuring Angles:

A \qquad can be used to approximate the \qquad of an angle. An angle is measured in units called \qquad .

Classifying Angles:

Example \#1: Use the diagram of the indicated angle. Then classify the angle.
a.) $m \angle J H L=$
b.) $m \angle G H K=$
c.) $m \angle J H G=$
d.) $m \angle J H K=$

Angle Addition Postulate: (Postulate 4)

If P is the interior of $\angle R S T$, then the measure of $\angle R S T$ is equal to the
sum of the measures of \qquad and \qquad

Example \#2: Given that $m \angle G F J=35^{\circ}$, find $m \angle H F J$.

Example \#3: Given that $m \angle L K N=145^{\circ}$, find $m \angle L K M$ and $m \angle M K N$.

Example \#4: Given that $\angle K L M$ is a straight angle, find $m \angle K L N$ and $m \angle N L M$

Two angles are congruent angles if they have the same \qquad .

Angle Bisector: A ray that divides an angle into two angles that are \qquad

Example \#5: In the diagram, $\overrightarrow{W Y}$ bisects $m \angle X W Z$ and $m \angle X W Y=29^{\circ}$. Find $m \angle X W Z$.

Chapter 1.5: Describe Angle Pair Relationships

Objective: I can use special angle relationships to find angle measures.

Review:

1. How many points determine a line?
2. How many points determine a plane?

3. Use the diagram to help you answer the following questions.
a.) Give two more names for $\overleftrightarrow{Y W}$
b.) Name two line segments
c.) Name all the rays with endpoint W
d.) Name a pair of opposite rays
e.) Name an acute angle
f.) Name an obtuse angle
g.) Name a right angle
h.) Name a straight angle

Important: Angle Pair Relationships

Name	Definition	Example
Complementary Angles	Two angles whose sum is	
Supplementary Angles	Two angles whose sum is	
Adjacent Angles	Two angles that share a common \qquad and \qquad , but have no common \qquad point	
Linear Pair	Two \qquad angles are a linear pair if the non-common sides are \qquad rays.	
Vertical Angles	Two angles are vertical if their sides form \qquad pairs of opposite rays.	

Example \#1: In the figure, name a pair of complementary angles, a pair of supplementary angles and a pair of adjacent angles.
a.)

b.)

Example \#3: Given that $\angle 3$ is a complement of $\angle 4$ and $m \angle 4=18^{\circ}$, find $m \angle 3$.

Example \#4: Identify all of the linear pairs and all of the vertical angles in the figure.

Example \#5: Two angles form a linear pair. The measure of one angle is 4 times the measure of the other. Find the measure of each angle.

Concept Check:

1. In the diagram shown, $m \angle L M N=140^{\circ}$. Find $m \angle P M N$

2. $\overrightarrow{V Z}$ bisects $\angle U V W$, and $m \angle U V Z=81^{\circ}$. Find the $m \angle U V W$. Then classify $\angle U V W$ by its angle measure.
3. $\angle 1$ and $\angle 2$ are complementary angles. Find the measures of the angles when $m \angle 1=(x-10)^{\circ}$ and $m \angle 2=(2 x+40)^{\circ}$

Chapter 1.6: Classifying Polygons

Objective: I can classify polygons.

Review:

1. Use the diagram to help you answer the following questions
a.) Name a pair of complementary angles
b.) Name a pair of supplementary angles

c.) Name two pair of adjacent angles.
d.) Name a linear pair
e.) Name all sets of vertical angles

Identifying Polygons:

A polygon is \qquad

1. It is formed by \qquad line segments called \qquad .
2. Each side \qquad exactly two sides, one at each \qquad , so that no two sides with a common endpoint are collinear.

A vertex is \qquad

A polygon is \qquad if no line that contains a side of the polygon contains a point in the interior of the polygon.

A polygon that is not \qquad is called \qquad .

Example \#1: Tell whether the figure is a polygon and whether it is convex or concave.
a.)

b.)

c.)

d.)

e.)

f.)

 can also be used to name a polygon.
Example: A polygon with 18 sides is a 18 -gon.

Number of Sides	Type of Polygon
3	
4	
5	
6	
7	
8	
9	
10	
12	
n	

In an Equilateral Polygon,

\qquad .

In an Equiangular Polygon, \qquad .

A Regular Polygon,

\qquad .

Example \#2: Classify the polygon by the number of sides. Tell whether the polygon is equilateral, equiangular or regular. Explain your reasoning.
a.)

b.)

Example \#3: The lengths (in feet) of two sides of a regular quadrilateral are represented by the expressions $8 x-6$ and $4 x+22$. Find the perimeter of the quadrilateral.

Example \#4: The expressions $(3 x+63)^{\circ}$ and $(7 x-45)^{\circ}$ represent the measures of two angles of a regular decagon. Find the measure of the decagon.

