Name: ____

Geometry

Unit 1: Essentials of Geometry

Priority Standard: G.CO.1: Know precise definition of angles, circle, perpendicular line, parallel line and line segment, based on the undefined notions of point, line distance along a line and distance around a circular arc.

Unit "I can" statements:

- 1. I can name and sketch geometric figures.
- 2. I can use segment postulates to identify congruent segments.
- 3. I can use the midpoint and distance formulas.
- 4. I can name, measure and classify angles.
- 5. I can use special angle relationships to find angle measures.
- 6. I can classify polygons.
- 7. I can the perimeter/circumference and area of squares, rectangles, triangles and circles.

Common Core State Standards that are addressed in this unit include: For more information see <u>www.corestandards.org/Math/</u> Objective: I can name and sketch geometric figures.

Algebra Review:

1. Simplify if x = 2; -18 + 3x 2. Solve for x; 8x + 12 = 60 3. Simplify; |3 - 11|

Term	Definition	Example/Symbols
Point	Has dimension Represented with a	
Line	Has dimension Represented by a line with two , but extends NOTE:	
Plane	Has dimension and extends NOTE:	
Collinear Points		
Coplanar Points		
Line Segment, Endpoints	Part of the line that consists of two	

Ray	Ray AB consists of the A and all endpoints on that lie on the same side as B.	
Opposite Rays		
Intersection	When two or more geometric figures cross at a similar point or line.	

а

Example #1: Use the diagram to answer the following questions (Line *b* and point P lie on Plane Z).

- a.) Give two other names for \overleftarrow{LN} .
- b.) Give two other names for plane Z.
- c.) Name three points that are collinear.
- d.) Name four points that are coplanar.
- e.) Give two other names for \overrightarrow{MQ} .
- f.) Name a point that is not coplanar with points L, N and P.

Example #2: Use the diagram to answer the following questions

- a.) Give another name for \overline{VX}
- b.) Name all rays with endpoints W. Which are opposite rays?
- c.) Give another name for \overline{YW}
- d.) Are \overrightarrow{VX} and \overrightarrow{XV} the same ray? Are \overrightarrow{VW} and \overrightarrow{VX} the same ray?

Example #3: Sketch the following descriptions

- a.) A plane and a line that intersects the plane at more than one point.
- b.) A plane and a line that is in the plane AND another line that intersects the line and plane at a point.

c.) Two planes that intersect in a line.

Example #4: Graph the inequality on a number line. Tell whether the graph is a segment, a ray or rays, a point, or a line.

a.) $x \ge 2$ b.) $2 \le x \le 5$ c.) $x \le 0$ or $x \ge -8$

Chapter 1.2: Use Segments and Congruence

Objective: I can use segment postulates to identify congruent segments.

Postulate or Axiom:

Theorem:

Postulate 1: Ruler Postulate		
The points on a line can be matched one to one with		
real numbers. The real number that correspond to a point is the		
of the point.		
The between points A and B		
(Written as), is the absolute value of the difference		
of the coordinates of A and B.		

Between:

Postulate 2: Segment Addition Postulate	
If B is between A and C, then	—
If $AB + BC = AC$, then	
·	
Example #1: The locations shown lie in a straight line.	D
Find the distance from the starting point to the destination.	^{87 mi} Destination
	S 64 mi Rest Area

Starting Point

Congruent Line Segments:

Symbols:

What is the difference between = and \cong ?

Example #3: Plot F(4,5), G(-1, 5), H(3, 3), and J(3, -2) in a coordinate plane. Then determine whether \overline{FG} and \overline{HJ} are congruent.

Objective: I can use the midpoint and distance formulas

Algebra Review:

1. You are given an equation of a line and a point. Use substitution to determine whether the point is on the line.

a.) y = -x + 3; A(6,3)b.) y = -x + 3; A(6,3)

2. Simplify. Round to the nearest hundredth when necessary.

a.) $\sqrt{9}$ b.) $\sqrt{-9}$ c.) $\sqrt{20}$ d.) $\sqrt{100}$ e.) $\sqrt{12}$

Midpoint:		
The point that	_ a line segment into	
two segments	8.	
Segment Bisector:		
A point, ray, line, line segment	or plane that	_
a line segment at its		

Example #1: Find AB.

Example #2: Point C is the midpoint of \overline{BD} . Find the length of \overline{BC} .

Midpoint Formula:

If A(x_1, y_1) and B (x_2, y_2) are points in a coordinate plane, then midpoint M of \overline{AB} has coordinates

Example #3: The endpoints of \overline{PR} are P(-2, 5) and R(4, 3). Find the coordinates of the midpoint M.

Example #4: The midpoint of \overline{AC} is M(3, 4). One endpoint is A(1, 6). Find the coordinates of endpoint C.

Distance Formula:

If $A(x_1, y_1)$ and $B(x_2, y_2)$ are points in a coordinate plane, then the distance between A and B is

Example #5: What is the approximate length of \overline{RT} , with endpoints R(3, 2) and T (-4, 3)?

Example #6: What is the approximate length of \overline{GH} , with endpoints G(5, -1) and H(-3, 6)?

Chapter 1.4: Measure and Classify Angles

Objective: I can name, measure and classify angles.

Review:

1. Find the coordinates of the midpoint and length of \overline{LR} , with endpoints L(3, -7) and R(-1, 9).

	_ consists of two different	rays with the same	·
The rays are the	of the angle.		
The endpoint is the	of the angle	·.	
Name:			
But how should you na	ame this next example?		
F			
	J		
G	→		
G	Н		
Measuring Angles	:		
A	can be used to app	roximate the	of an angle. An angle
is measured in units ca	illed		
	٨		
		Using Words:	
	90°_	Using Symbols:	
	← 90°	Using Symbols:	
	← 90°	Using Symbols:	
	€	Using Symbols:	
	< ^{90°}	Using Symbols:	
	€00°	Using Symbols:	
	€	Using Symbols:	
	€	Using Symbols:	

Example #1: Use the diagram of the indicated angle. Then classify the angle.

a.) $m \angle JHL =$

- b.) $m \angle GHK =$
- c.) $m \angle JHG =$
- d.) $m \angle JHK =$

Angle Addition Postulate: (Postulate 4) If P is the interior of $\angle RST$, then the measure of $\angle RST$ is equal to the sum of the measures of ______ and _____

Example #2: Given that $m \angle GFJ = 35^\circ$, find $m \angle HFJ$.

Example #3: Given that $m \angle LKN = 145^\circ$, find $m \angle LKM$ and $m \angle MKN$.

Example #4: Given that $\angle KLM$ is a straight angle, find $m \angle KLN$ and $m \angle NLM$

Example #5: In the diagram, \overrightarrow{WY} bisects $m \angle XWZ$ and $m \angle XWY = 29^\circ$. Find $m \angle XWZ$.

Objective: I can use special angle relationships to find angle measures.

Review:

- 1. How many points determine a line?
- 2. How many points determine a plane?
- 3. Use the diagram to help you answer the following questions.
 - a.) Give two more names for \overleftarrow{YW}
 - c.) Name all the rays with endpoint W
 - e.) Name an acute angle
 - g.) Name a right angle

Х

f.) Name an obtuse angle

b.) Name two line segments

d.) Name a pair of opposite rays

h.) Name a straight angle

Important: Angle Pair Relationships

Name	Definition	Example
Complementary Angles	Two angles whose sum is	
Supplementary Angles	Two angles whose sum is	
Adjacent Angles	Two angles that share a common and , but have no common point	
Linear Pair	Two angles are a linear pair if the non-common sides are rays.	
Vertical Angles	Two angles are vertical if their sides form pairs of opposite rays.	

Example #1: In the figure, name a pair of complementary angles, a pair of supplementary angles and a pair of adjacent angles.

a.)

 $\begin{array}{c} D & R \\ \hline C & 122^{\circ} \\ \hline 32^{\circ} & A \\ \hline S \\ \hline T \\ \end{array}$

b.) 41° 131° 49°

Example #2 Given that $\angle 1$ is a **<u>supplement</u>** of $\angle 2$ and $m \angle 1 = 54^{\circ}$, find $m \angle 2$.

Example #3: Given that $\angle 3$ is a <u>complement</u> of $\angle 4$ and $m \angle 4 = 18^{\circ}$, find $m \angle 3$.

Example #4: Identify all of the linear pairs and all of the vertical angles in the figure.

Example #5: Two angles form a linear pair. The measure of one angle is 4 times the measure of the other. Find the measure of each angle.

1. In the diagram shown, $m \angle LMN = 140^\circ$. Find $m \angle PMN$

2. \overrightarrow{VZ} bisects $\angle UVW$, and $m \angle UVZ = 81^\circ$. Find the $m \angle UVW$. Then classify $\angle UVW$ by its angle measure.

3. $\angle 1$ and $\angle 2$ are complementary angles. Find the measures of the angles when $m \angle 1 = (x - 10)^\circ$ and $m \angle 2 = (2x + 40)^\circ$

Chapter 1.6: Classifying Polygons

Objective: I can classify polygons.

Review:

1. Use the diagram to help you answer the following questions

- a.) Name a pair of complementary angles
- b.) Name a pair of supplementary angles

c.) Name two pair of adjacent angles.

d.) Name a linear pair

e.) Name all sets of vertical angles

Identifyi	Identifying Polygons:		
A <u>polyg</u> o	on is		
1.	It is formed by	line segments called	
2.	Each side	exactly two sides, one at each, so that no two point are collinear.	
A <u>vertex</u>	is		
1 .0	the polygon.	_ if no line that contains a side of the polygon contains a point in the	
A polygon	that is not	is called	
Example #1: Tell whether the figure is a polygon and whether it is convex or concave.			
a.)	\sum	b.)	

d.)

The term $\underline{n-gon}$, where *n* is the number of a polygon's sides,

can also be used to name a polygon.

Example: A polygon with 18 sides is a 18-gon.

Number of Sides	Type of Polygon
3	
4	
5	
6	
7	
8	
9	
10	
12	
n	

In an **Equilateral Polygon**, _____

In an **Equiangular Polygon**, ______.

A Regular Polygon, _____

Example #2: Classify the polygon by the number of sides. Tell whether the polygon is equilateral, equiangular or regular. Explain your reasoning.

Example #3: The lengths (in feet) of two sides of a regular quadrilateral are represented by the expressions 8x - 6 and 4x + 22. Find the perimeter of the quadrilateral.

Example #4: The expressions $(3x + 63)^\circ$ and $(7x - 45)^\circ$ represent the measures of two angles of a regular decagon. Find the measure of the decagon.