\qquad
Semester 2 Review

Chapter 7:

1. Find the unknown side length. Round to the nearest hundredth if needed.
a.)

b.)

2. Given the three side lengths. Classify the type of triangle.
a.) $21,20,28$
b.) $14,50,40$
3. Using the rules of special right triangles, find the \boldsymbol{x} and \boldsymbol{y}. Write answer in simplest radical form.
a.)

x in
b.)

c.)

d.)

4. Solve each right triangle.
a.)

b.)

$B C=$ \qquad , $m \angle A=$ \qquad , $\mathrm{CA}=$ \qquad $\mathrm{BA}=$ \qquad , $m \angle A=$ \qquad , $m \angle B=$ \qquad
5. When getting off an airplane there is a ramp from the door to the ground. The airplane door is 19 feet off the ground and the ramp has a 31° angle of elevation. What is the length of the ramp?

Chapter 8:

6. Find the sum of the measures of the interior angles of a 18-gon.
7. Find the sum of the measures of the exterior angles of 14 -gon.
8. Find the measure of one exterior and interior angle of a regular 24-gon.
\qquad Exterior angle: \qquad
9. The diagonals of rhombus PQRS interest at T. Given that $m \angle R P S=28^{\circ}$ and $R T=6 \mathrm{ft}$ find the indicated measure. Rounds answers to the nearest tenth.
a.) $m \angle Q T P$
b.) $m \angle Q P R$
c.) $m \angle P S R$
d.) TP
e.) PR
f.) PS

10. The diagonals of rectangle WXYZ interest and P . Given that $m \angle Y X Z=54^{\circ}$ and $X Z=18$ in, find the indicated measure. Rounds answers to the nearest tenth.
a.) $m \angle W X Z$
b.) $m \angle W P X$
c.) $m \angle X P Y$
d.) $P Z$
e.) PY
f.) $Y Z$

11. Find the length of the midsegment of trapezoid UVWX
$\mathrm{AB}=$ \qquad

12. Find $m \angle J=$

13. If $\mathrm{CD}=15 \mathrm{~cm}$, find the measures below:
$m \angle \mathrm{~F}=$ \qquad

$$
m \angle \mathrm{D}=
$$

$m \angle \mathrm{E}=$ \qquad

$$
\mathrm{EF}=
$$

Chapter 10:

14. $\overline{N P}$ is tangent to $\odot M$ at N . Find MP.

15. Given: $m \overparen{m N}=14^{\circ}$ and $m \overparen{Q P}=100^{\circ}$. Find $m \angle Q L P$.

16. Find $m \angle A D B$ and $m \widehat{D C}$

17. Find $\widehat{D C}, m \widehat{B C}, m \widehat{B A}$, if $\overline{C E}$ and $\overline{A D}$ are diameters.

18. Find the value of x.

Round to nearest tenth.

21. Find the value of x.

22. Find the value of x.

23. Graph the equation: $(x-5)^{2}+(y+4)^{2}=9$

24. Find the center and radius of a circle that has the standard equation: $(x+6)^{2}+(y-3)^{2}=49$
25. Write the standard equation of the circle with the given center and radius
a.) Center (9, -2), Radius 8
b.) Center $(-3,6)$, Radius 1.4

Chapter 11:

Find the area of the figure- label your answers.
26.

27.

28.

29.

30.

31.

32.

33. Area of the shaded region

34. Use $\odot Q$ to find the indicated measures. Round to the measures to the nearest hundredth if necessary and label your answers.
a.) $m \overparen{A C B}$
b.) Arc Length $\overparen{A C B}$

$\begin{array}{ll}\text { c.) Radius of } \odot Q & \text { d.) } m \overparen{A B}\end{array}$
e.) Arc Length $\overparen{A B}$
f.) Circumference of $\odot Q$
g.) Area of $\odot Q$
35. The area of $\odot D$ is $113.1 \mathrm{~m}^{2}$. The area of sector ADB is $34.6 \mathrm{~m}^{2}$. Find the indicated measure. Round to the measures to the nearest hundredth if necessary and label your answers.

a.) Radius of $\odot D$
b.) Circumference of $\odot D$
c.) $m \overparen{A B}$
d.) Length of ACB

Area of $\odot D$ is $\mathbf{1 1 3 . 1} \mathbf{~ m}^{\mathbf{2}}$

36. Find the probability that a point k , selected randomly on $\overline{\mathrm{PQ}}$, is on the given segment. Express your answer as a fraction, decimal and percent.

a.) $\overline{R S}$
b.) $\overline{P Q}$
c.) $\overline{R Q}$
37. Find the probability that a point chosen at random lies inside the square and outside the circle in the shaded region. (Round to the nearest hundredth if needed.)

Chapter 12:

Use Euler's Theorem to find the value of n.
38. Faces: 10

Vertices: 14
Edges: n
39. Faces: 9

Vertices: n
Edges: 21
40. Faces: n

Vertices: 18
Edges: 27

For each of the following solids, provide the specific name, surface area, and volume. Round to the nearest hundredth and label your answers.

SA= \qquad
$\mathrm{V}=$ \qquad

43. Name: \qquad
SA= \qquad
$\mathrm{V}=$ \qquad 42. Name: \qquad

$$
\mathrm{SA}=
$$

\qquad
\qquad

44. Name: \qquad
\qquad
$\mathrm{SA}=$
$\mathrm{V}=$ \qquad

45. Name: \qquad
$\mathrm{SA}=$ \qquad
$\mathrm{V}=$ \qquad

46. $\mathrm{SA}=$
$\mathrm{V}=$ \qquad

47. The liquid propane (LP) tank below is cylindrical in shape with a hemisphere on each end. The tank has an over all length of 20 feet and a diameter of 5 feet. Determine the volume and surface area of the tank.

48. Fill in the chart

Ratio of perimeter/corresponding lengths (scale factor)	Ratio of Areas (surface area)	Ratio of Volumes
$4: 7$		
	$121: 25$	$27 \pi: 64 \pi$

49. Solid A (shown) is similar to Solid B (not shown) with the given scale factor of A to B. Find the surface area and volume of Solid B.

Scale factor of 3:2
SA $=324 \pi \mathrm{in}^{2}$
$\mathrm{V}=972 \pi \mathrm{in}^{3}$

