Finding Lengths in a Regular N-gon

To find the area of a regular n-gon with radius r, you may need to first find the apothem a or the side length s.

You can use	when you know <i>n</i> and	Example(s) to Reference
$a^2 + b^2 = c^2$	Need to Know 2 side lengths. (randa or rands)	Example # 5
SOH-CAH-TOA	Need to only know one side length Need to find central * angle	Example # 6
Special Right D's 30'-60'-90' or 45'-45'-90'	Need to know only one side length * Need to find central angle	Example #7

Chapter 11.7: Use Geometric Probability

Probability: the likelihood that an event will occur.

$$P=0$$
 $P=0.25$ $P=0.50$ $P=0.75$ $P=1$
02 252 502 152 1w2

Impossible Unlikely Equally likely Likely Certain

Geometric Probability: A ratio that involves a geometric measure such as length or area.

<u>Probability and Length:</u> Let \overline{AB} be a segment that contains the segment \overline{CD} . If a point K on \overline{AB} is chosen at random, then the probability that it is on \overline{CD} is the ratio of the length of \overline{CD} to the length of \overline{AB} .

$$P(K \text{ is on } \overline{CD}) = \frac{\text{length of } \overline{CD}}{\text{length of } \overline{AB}}$$
 (Total distance)

Probability and Area: Let J be a region that contains region M. If a point K in J is chosen at random, then the probability that it is in region M is that ratio of the area of M to the area of J.

C

B

Example #1: Find the probability that a point chosen at random on \overline{AD} is on the given line segment. Express your answer as a fraction, a decimal and a percent.

Example #2: Find the probability that a point chosen at random in the figure lies in the shaded region. Express

Shaded Area =
$$48 - 4.5\pi$$

= 33.86 units^2

Example #3: Find the probability that a point chosen at random in the figure lies in the shaded region. Express you answer as a percent. * Shaded Area = Total Area - Non-shaded Area &

Shaded Area =
$$70 - 40$$

= 30 units^2

Total Area = 5(8+20)

Unshaded Area =
$$(8)(5)$$

= 40 units²

pg. 18