Geometry
 Mrs. Tilus

Unit 12: Surface Area and Volume of Solids

Priority Standard: G-GMD: Use volume formulas for cylinders, pyramids, cones and spheres to solve problems

Unit 8 "I can" Statements:

1. I can identify solids
2. I can find the surface area of prisms and cylinders
3. I can find the surface area of pyramids and cones
4. I can find the volume of prisms and cylinders
5. I can find the volume of pyramids and cones
6. I can find the surface area and volume of spheres
7. I can use the properties of similar solids to find unknown ratios, corresponding lengths, areas or volumes

Polyhedron:

Face:

Edge:

Vertex:

Types of Solids: Which solids are polyhedrons?

Classifying Solids: To name a prism or a pyramid, use the shape of the base.

Regular Polyhedrons: A polyhedron is regular if all of its \qquad are
\qquad regular polygons.

- A polyhedron is convex: if any two points on its surface can be connected by a segment that lies entirely \qquad or on the polyhedron.

- A polyhedron is concave: if two points on its surface is connected by a segment that goes \qquad the polyhedron.

There are 5 regular polyhedra called \qquad

Tetrahedron

Cube

Octahedron

Dodecahedron

Example \#1: Tell whether the solid is a polyhedron. If it is, name the polyhedron and find the number of faces, vertices and edges.
a.)

b.)

c.)

d.)

e.)

f.)

g.)

h.)

i.)

Euler's Theorem (Theorem 12.1):

The number of faces (F), vertices (V) and edges (E) of a Polyhedron are related by the formula...

Example \#2: Find the number of faces, vertices and edges of the polyhedron shown. Check your answers using Euler's Theorem.

Example \#3: Is it possible for a polyhedron to have 16 faces, 34 vertices and 50 edges?

Cross Section: the intersection of a \qquad and a \qquad _.

Example \#4: Describe the shape formed by the intersection of the plane and the solid.
a.)

b.)

c.)

d.)

e.)

Chapter 12.2: Surface Area of Prisms and Cylinders

Prism: Polyhedron with 2 congruent faces (bases) that lie in parallel planes.

Lateral Faces: Parallelograms formed by connecting the corresponding vertices of the bases

Lateral Edge: Segments connecting the vertices of the base.

Net: two dimensional representations of the faces of a polyhedron.
Surface Area of a polyhedron, is the sum of the area of all its faces.
Lateral Area of a polyhedron is the sum of the area of the lateral faces.

Example \#1: Find the surface area of a rectangular prism with height 2 cm , length 5 cm and width 6 cm .

Example \#2: Draw a net of a triangular prism.

Right Prism: Each lateral edge is perpendicular to both bases.

Oblique Prism: Each lateral edge is not perpendicular to the bases.

Surface Area of a Right Prism:

The surface area S of a right prism is

Where a is the apothem of the base, B is the area of a base, P is the perimeter of a base, and h is the height.

Example \#3: Find the surface area of a right rectangular prism with height 7 inches, length 3 inches and width 4 inches.

Example \#4: Find the surface area of the right pentagonal prism.

Example \#5: Find the height of the right prism

Cylinder: A solid with congruent, circular, parallel bases.
Right Cylinder: Segment joining the centers of the bases is perpendicular to the bases.

Cylinder Net:

Surface Area of a Right Cylinder:

The surface area S of a right cylinder is

Where B is the area of a base, C is the circumference of a base, r is the radius of a base and h is the height.

Example \#5: Find the surface area of the right cylinder.

Example \#6: Find the height of the right cylinder.

Chapter 12.3: Surface Area of Pyramids and Cones

Pyramid: a polyhedron in which the base is a polygon and the lateral faces are triangles with a common vertex.

Lateral Edge:

Base Edge:

Regular Pyramid: has a \qquad
for a base and the segment joining the vertex and the center of the base is \qquad to the base.

Lateral Faces are

Regular pyramid

Slant Height: the height of a lateral face of the regular pyramid (A nonregular pyramid does not have aslant height)

Example \#1: A regular square pyramid has height of 15 cm and a base edge length of 16 cm . Find the area of each lateral face of the pyramid.

Surface Area of a Regular Pyramid (Theorem 12.4):

The surface area S of a regular pyramid is
where B is the area of the Base, P is the perimeter of the base, and
 l is the slant height.

Example \#2: Find the surface area of the regular hexagonal pyramid.

Example \#3: Find the surface area of the regular pentagonal pyramid shown

Cone: a solid with a \qquad and a \qquad that is not in the same plane as the base.

Radius:

Height:

Right cone
In a \qquad , the segment joining the vertex and the center of the base is
\qquad to the base, and the \qquad is the distance between
the vertex and a point of the base edge.
Lateral Surface:

Surface Area of a Right Cone (Theorem 12.5):

The surface area S of a right cone is

where B is the area of the Base, C is the circumference of the base, r is the radius of the base, and l is the slant height.

Example \#4: Find the lateral area of the right cone.

Example \#5: Find the surface area of the right cone.

Example \#6: Find the surface area of the solid. The pyramids are regular and the cones are right. Round your answer to the nearest hundredth, if necessary.
a.)

b.)

Chapter 12.4: Volume of Prisms and Cylinders

Volume:

Volume of a Cube (Postulate 27):
The volume of a cube is the cube of the length of its side.

Volume Congruence Postulate (Postulate 28):

If two polyhedral are congruent, then they have the same volume.

Volume Addition Postulate (Postulate 29):

The volume of a solid is the sum of the volumes of all its nonoverlapping parts.

Example \#1: Find the volume of the puzzle piece in cubic units.

Volume of a Prism (Theorem 12.6):

The volume V of a prism is \qquad where B is the area of a base and h is the height.

Volume of a Cylinder (Theorem 12.7):

The volume V of a cylinder is \qquad
Where B is the area of a base, h is the height, and r is the radius of a base.

Example \#2: Name each solid then find the volume. Round your answer to two decimal places, if necessary.
a.)

b.)

c.)

d.)

e.)

Example \#3: The volume of the right cylinder is $200 \pi \mathrm{~cm}^{3}$. Find the height.

Cavalieri's Principle (Theorem 12.8):

If two solids have the same \qquad and the same cross-sectional area at every level, then they have the same \qquad
Which means...

Example \#4: Find the volume of the oblique cylinder. Round answers to the nearest hundredth.

Example \#5: Find the volume of each solid. Round answers to the nearest hundredth.
a.)

b.)

Chapter 12.5: Volume of Pyramids and Cones

Volume of a Pyramid (Theorem 12.9):

The volume V of a pyramid is
where B is the area of the base and h is the height.

Example \#1: Find the volume of the pyramid with the regular base. Round answers to the nearest hundredth.
a.)

b.)

Volume of a Cone (Theorem 12.10):
The volume V of a cone is
where B is the area of the base, h is the height, and r is the radius of the base.

Example \#2: Find the volume of each cone. Round answers to the nearest hundredth.
a.)

b.)

c.)

d.)

Example \#3: Find the volume of the solid shown. Round answers to the nearest hundredth.
a.)

b.)

Chapter 12.6: Surface Area and Volume of Spheres

A \qquad is the set of all points in space equidistant from a given point.

Center of a Sphere: the given point from which all points on the sphere is \qquad .

Radius of a Sphere: a segment from the \qquad to any point on the sphere

Chord of a Sphere: a segment whose \qquad are on the sphere.

Diameter of a Sphere: a \qquad that contains the \qquad of the sphere.

Great Circle: the \qquad of a sphere and plane that contains the \qquad of the sphere.

Hemisphere: one of the congruent \qquad of a sphere.

Surface Area of a Sphere (Theorem 12.11):

The surface area S of a sphere is
where r is the radius of the sphere.

Volume of a Sphere (Theorem 12.12):

The volume V of a sphere is

where r is the radius of the sphere.

Example \#1: Find the surface area and volume of the sphere. Round answers to the nearest hundredth.
a.)

b.)

Example \#2: The surface area of a sphere is $110.25 \pi \mathrm{ft}^{2}$. Find the diameter of the sphere. Round answers to the nearest hundredth.

Example \#3: Find the volume of the composite solid. Round answers to the nearest hundredth.
a.)

b.)

Chapter 12.7: Explore Similar Solids

Similar Solids: Two Solids of same type with equal ratios of corresponding linear measures.
Scale Factor: common ratio to go from one solid to the other.

Example \#1: Tell whether the given right rectangular prism is similar to the right rectangular prisms shown below.

a.)

b.)

Example \#2: Tell whether the pair of solids is similar.
a.)

b.)

Similar Solids Theorem (Theorem 12.13):

If two similar solids have a scale factor of \qquad ,
then corresponding areas have a ratio of \qquad , and corresponding volumes have a ratio of \qquad .

Example \#2: Fill in the chart

Ratio of perimeter/corresponding lengths (scale factor)	Ratio of Areas (surface area)	Ratio of Volumes
$3: 4$		
	$49: 36$	$1: 125$
$24: 3=$		$27 \pi: 125 \pi$

Example \#3: The pyramids are similar. Pyramid P has a volume of $1000 \mathrm{in}^{3}$ and Pyramid Q has a volume of 216 in 3. Find the scale factor of Pyramid P to Pyramid Q.

Example \#4: The two cylinders are similar. Find the scale factor of Cylinder A to Cylinder B.

Example \#5: Cones A and B are similar with a scale factor of 5:2. Find the surface area of Cone B given that the surface area of Cone A is $2356.2 \mathrm{~cm}^{2}$. Round your answer to the nearest hundredth.

Find the volume of Cone B given that the volume of Cone A is $7450.9 \mathrm{~cm}^{3}$. Round your answer to the nearest hundredth.

