Geometry Mrs. Tilus

Unit 12: Surface Area and Volume of Solids

Priority Standard: G-GMD: Use volume formulas for cylinders, pyramids, cones and spheres to solve problems

Unit 8 "I can" Statements:

- 1. I can identify solids
- 2. I can find the surface area of prisms and cylinders
- 3. I can find the surface area of pyramids and cones
- 4. I can find the volume of prisms and cylinders
- 5. I can find the volume of pyramids and cones
- 6. I can find the surface area and volume of spheres
- 7. I can use the properties of similar solids to find unknown ratios, corresponding lengths, areas or volumes

Chapter 12.1: Explore Solids

Polyhedron:	
Face:	
Edge:	
Vertex:	

Types of Solids: Which solids are polyhedrons?

Classifying Solids: To name a prism or a pyramid, use the shape of the base.

Example #1: Tell whether the solid is a polyhedron. If it is, name the polyhedron and find the number of faces, vertices and edges.

Euler's Theorem (Theorem 12.1):

The number of faces (F), vertices (V) and edges (E) of a Polyhedron are related by the formula...

Example #2: Find the number of faces, vertices and edges of the polyhedron shown. Check your answers using Euler's Theorem.

Example #3: Is it possible for a polyhedron to have 16 faces, 34 vertices and 50 edges?

Cross Section: the intersection of a and a	a	
Example #4: Describe the shape form	ed by the intersection of the plane and t	the solid.
a.)	b.)	c.)
d.)	e.)	

Chapter 12.2: Surface Area of Prisms and Cylinders

<u>Prism</u>: Polyhedron with 2 congruent faces (bases) that lie in parallel planes.

Lateral Faces: Parallelograms formed by connecting the corresponding vertices of the bases

Lateral Edge: Segments connecting the vertices of the base.

Net: two dimensional representations of the faces of a polyhedron.

Surface Area of a polyhedron, is the sum of the area of all its faces.

Lateral Area of a polyhedron is the sum of the area of the lateral faces.

Example #1: Find the surface area of a rectangular prism with height 2cm, length 5 cm and width 6 cm.

Example #2: Draw a net of a triangular prism.

Right Prism: Each lateral edge is perpendicular to both bases.

Oblique Prism: Each lateral edge is not perpendicular to the bases.

Surface Area of a Right Prism:

The surface area S of a right prism is

Where a is the apothem of the base, B is the area of a base, P is the perimeter of a base, and h is the height.

Example #3: Find the surface area of a right rectangular prism with height 7 inches, length 3 inches and width 4 inches.

Example #4: Find the surface area of the right pentagonal prism.

Example #5: Find the height of the right prism

Cylinder: A solid with congruent, circular, parallel bases.

Right Cylinder: Segment joining the centers of the bases is perpendicular to the bases.

Cylinder Net:

Surface Area of a Right Cylinder:

The surface area *S* of a right cylinder is

Where B is the area of a base, C is the circumference of a base, r is the radius of a base and h is the height.

Example #5: Find the surface area of the right cylinder.

Example #6: Find the height of the right cylinder.

Pyramid: a polyhedron in which the base is a polygon and the lateral faces are triangles with a common vertex.		
Lateral Edge:	vertex lateral edge	
Base Edge:	base lateral faces edge Pyramid	
Regular Pyramid: has a		
for a base and the segment joining the vertex and the center of the	beight slant	
base is to the base.	height	
Lateral Faces are		
Slant Height: the height of a lateral face of the regular pyramid (A nonregular pyramid does not have aslant height)	Regular pyramid	

Example #1: A regular square pyramid has height of 15 cm and a base edge length of 16 cm. Find the area of each lateral face of the pyramid.

Surface Area of a Regular Pyramid (Theorem 12.4):

The surface area S of a regular pyramid is

where B is the area of the Base, P is the perimeter of the base, and l is the slant height.

Example #2: Find the surface area of the regular hexagonal pyramid.

Example #3: Find the surface area of the regular pentagonal pyramid shown

Cone: a solid with a plane as the base.		and a	that is not in the same
Radius: Height:			slant height base
			Right cone
In a	, the segment jo	bining the vertex and	the center of the base is
	_ to the base, and the		is the distance between
the vertex and a point of Lateral Surface:	the base edge.	(e slant height
Surface Area of a Ri	ight Cone (Theorem 12.5):		
The surface area S of a ri	ght cone is		

where B is the area of the Base, C is the circumference of the base, r is the radius of the base, and l is the slant height.

Example #4: Find the lateral area of the right cone.

Example #5: Find the surface area of the right cone.

Example #6: Find the surface area of the solid. The pyramids are regular and the cones are right. Round your answer to the nearest hundredth, if necessary.

Chapter 12.4: Volume of Prisms and Cylinders

Volume:

Volume of a Cube (Postulate 27):

The volume of a cube is the cube of the length of its side.

Volume Congruence Postulate (Postulate 28):

If two polyhedral are congruent, then they have the same volume.

Volume Addition Postulate (Postulate 29):

The volume of a solid is the sum of the volumes of all its nonoverlapping parts.

Example #1: Find the volume of the puzzle piece in cubic units.

Volume of a Prism (Theorem 12.6):

The volume V of a prism is _____

where B is the area of a base and h is the height.

Volume of a Cylinder (Theorem 12.7):

The volume V of a cylinder is _____

Where B is the area of a base, h is the height, and r is the radius of a base.

Example #2: Name each solid then find the volume. Round your answer to two decimal places, if necessary.

Example #3: The volume of the right cylinder is 200π cm³. Find the height.

Cavalieri's Principle (Theorem 12.8):	
If two solids have the same	_ and the same cross-sectional area at every level, then they
have the same	
Which means	

Example #4: Find the volume of the oblique cylinder. Round answers to the nearest hundredth.

Example #5: Find the volume of each solid. Round answers to the nearest hundredth.

b.)

Volume of a Pyramid (Theorem 12.9):

The volume V of a pyramid is

where B is the area of the base and h is the height.

Example #1: Find the volume of the pyramid with the regular base. Round answers to the nearest hundredth.

b.)

R

Volume of a Cone (Theorem 12.10):

The volume V of a cone is

where B is the area of the base, h is the height, and r is the radius of the base.

Example #2: Find the volume of each cone. Round answers to the nearest hundredth.

Example #3: Find the volume of the solid shown. Round answers to the nearest hundredth.

Chapter 12.6: Surface Area and Volume of Spheres

A is the set of all points in space equidistant
from a given point.
Center of a Sphere: the given point from which all points on center radius
the sphere is great
Radius of a Sphere: a segment from the to
any point on the sphere
Chord of a Sphere: a segment whoseare on the sphere.
Diameter of a Sphere: a that contains the of the sphere.
Great Circle: the of a sphere and plane that contains the of the sphere.
Hemisphere: one of the congruent of a sphere.
Surface Area of a Sphere (Theorem 12.11):
The surface area S of a sphere is
where <i>r</i> is the radius of the sphere.
Volume of a Sphere (Theorem 12.12):
The volume V of a sphere is
where <i>r</i> is the radius of the sphere.

Example #1: Find the surface area and volume of the sphere. Round answers to the nearest hundredth.

Example #2: The surface area of a sphere is 110.25π ft². Find the diameter of the sphere. Round answers to the nearest hundredth.

Example #3: Find the volume of the composite solid. Round answers to the nearest hundredth.

Chapter 12.7: Explore Similar Solids

Similar Solids: Two Solids of same type with equal ratios of corresponding linear measures.

Scale Factor: common ratio to go from one solid to the other.

Example #2: Tell whether the pair of solids is similar.

Similar Solids Theorem (Theorem 12.13):

If two similar solids have a scale factor of _____,

then corresponding areas have a ratio of _____,

and corresponding volumes have a ratio of _____.

Example #2: Fill in the chart

Ratio of perimeter/corresponding lengths (scale factor)	Ratio of Areas (surface area)	Ratio of Volumes
3:4		
	49:36	
		1:125
24:3=		
		27π:125π

Example #3: The pyramids are similar. Pyramid P has a volume of 1000 in³ and Pyramid Q has a volume of 216 in³. Find the scale factor of Pyramid P to Pyramid Q.

Example #4: The two cylinders are similar. Find the scale factor of Cylinder A to Cylinder B.

Example #5: Cones A and B are similar with a scale factor of 5:2. Find the surface area of Cone B given that the surface area of Cone A is 2356.2 cm². Round your answer to the nearest hundredth.

Find the volume of Cone B given that the volume of Cone A is 7450.9 cm³. Round your answer to the nearest hundredth.